

Ф – Аннотация рабочей программы дисциплины

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

«Микро- и наноэлектроника»

по направлению 03.04.02 «Физика» (магистратура)

1. Цели и задачи освоения дисциплины

Целью дисциплины «Микро- и наноэлектроника» является подготовка физика к деятельности по разработке и исследованию одного из важнейших компонентов современной электроники - интегральных микросхем и функциональных микроэлектронных устройств.

Основными задачами изучения дисциплины являются:

- сообщить студенту принципы создания и функционирования ИС различного назначения, конструкции элементов ИС, топологии ИС, оценки надежности ИС;
- ознакомить студента с достижениями и перспективными направлениями развития микро- и наноэлектроники, проблемами качества интегральных схем, областями их применения;
- сформировать у студента навыки контроля параметров физической структуры и топологии ИС и ее элементов, контроля электрических параметров ИС и ее элементов, оценки надежности;
- сформировать представление о фундаментальных и конструкторско-технологических ограничениях в микроэлектронике и о функциональной микроэлектронике.

2. Место дисциплины в структуре ОПОП

Дисциплина "Микро- и наноэлектроника" (Б1.В.01) относится к вариативной части основной профессиональной образовательной программы (ОПОП) магистров по направлению 03.04.02 «Физика», преподается во 2-м семестре 1-ого курса магистрантам очной формы обучения и базируется на следующих предшествующих учебных дисциплинах:

Иностранный язык в профессиональной деятельности и межкультурные коммуникации;

Микросхемотехника;

Физика активных элементов:

Научно-исследовательская работа 1;

Научно-исследовательская работа 2;

Конструирование интегральных микросхем, микросборок и СВЧ-модулей;

Министерство образования и науки РФ Ульяновский государственный университет	Форма		
Ф – Аннотация рабочей программы дисциплины			

Для освоения дисциплины студент должен иметь следующие входные знания, умения, навыки и компетенции, полученные в рамках изучения предшествующих дисциплин:

ПК-2 – способность оформлять научно-техническую документацию, научные отчеты, обзоры, доклады и представлять научно-исследовательские результаты на семинарах и конференциях;

ПК-3 - способность свободно владеть разделами физики, необходимыми для решения научно-инновационных задач и применять результаты научных исследований в инновационной деятельности.;

ПК-4 - способность моделировать научные задачи и новые технологические процессы в области физики полупроводников, микроэлектроники и радиофизики.;

Данная дисциплина является предшествующей для следующих дисциплин:

Методические проблемы научных исследований в профессиональной деятельности

Электроника СВЧ;

Оптоэлектронные устройства;

Материалы электронной техники;

СВЧ-приборы и интегральные микросхемы;

Телекоммуникационная техника и волоконная оптика;

Практика по получению профессиональных умений и опыта профессиональной деятельности;

Проектная деятельность;

Преддипломная практика;

Научно-исследовательская работа 4;

Защита выпускной квалификационной работы, включая подготовку к процедуре защиты и процедуру защиты.

3. Перечень планируемых результатов освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих

Министерство образования и науки РФ Ульяновский государственный университет	Форма		
Ф – Аннотация рабочей программы дисциплины			

компетенций:

Код компетенци и	Наименование компетенции	Описание компетенции
ПК-2	Научно-	способность оформлять научно-техническую
	профессиональная	документацию, научные отчеты, обзоры,
	деятельность	доклады и представлять научно-
		исследовательские результаты на семинарах и конференциях.
ПК-3	Организационно	способность свободно владеть разделами
	инновационная и	физики, необходимыми для решения научно-
	педагогическая	инновационных задач и применять
	деятельность	результаты научных исследований в
		инновационной деятельности.
ПК-4	Опытно-	способность моделировать научные задачи и
	кострукторская	новые технологические процессы в области
	деятельность	физики полупроводников, микроэлектроники
		и радиофизики.

4. Общая трудоемкость дисциплины

Общая трудоемкость дисциплины составляет **5** зачетных единицы (**180** часов).

5. Образовательные технологии

В ходе изучения дисциплины используются как традиционные методы и формы обучения (лекции, в т.ч. с элементами проблемного изложения, лабораторные занятия, самостоятельная работа), так и интерактивные формы проведения занятий (проведение измерений под контролем преподавателя и др.).

При организации самостоятельной работы используются следующие образовательные технологии: самостоятельная работа, сопряженная с основными аудиторными занятиями (проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины); подготовка к выполнению лабораторных работ, оформление отчетов по лабораторным работам ; самостоятельная работа под контролем преподавателя в форме плановых консультаций, сдаче экзамена; внеаудиторная самостоятельная работа при выполнении студентом домашних заданий учебного характера.

6. Контроль успеваемости

Программой дисциплины предусмотрены виды текущего контроля: устный опрос, устный опрос- допуск к выполнению лабораторных работ, защита отчетов по лабораторным работам на лабораторном занятии.

Промежуточная аттестация проводится в форме зачета в виде экзамена.